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Abstract In this paper, we suggest and analyze a new self-adaptive inexact implicit method
with a variable parameter for general mixed quasi variational inequalities, where the skew-
symmetry of the nonlinear bifunction plays a crucial part in the convergence analysis of this
method. We use a self-adaptive technique to adjust parameter ρ at each iteration. The global
convergence of the proposed method is proved under some mild conditions. Preliminary
numerical results indicate that the self-adaptive adjustment rule is necessary in practice.
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1 Introduction

In recent years variational inequalities have been extended and generalized in different direc-
tions. A useful and important generalization of variational inequalities is called general mixed
variational inequalities involving the nonlinear bifunction, which unables us to study free,
moving, obstacle, equilibrium problems arising in pure and applied sciences in a unified and
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general framework. Due to the presence of the nonlinear bifunction, the projection method
and its variant forms including the Wiener–Hopf equations technique can not be extended to
suggest iterative methods for solving mixed quasi variational inequalities. To overcome these
drawbacks, some iterative methods have been suggested for special cases of the mixed quasi
variational inequalities. For example, if the bifunction is proper, convex and lower semicon-
tinuous function with respect to the first argument, then one can show that the mixed quasi
variational inequalities are equivalent to the fixed-point problems and the implicit resolvent
equations using the resolvent operator technique. This equivalent formulation has been used
to suggest and analyze some iterative methods, the convergence of these methods requires
that the operator is both strongly monotone and Lipschitz continuous. In recent years, some
modified iterative methods [10,13] have been suggested for solving mixed quasi variational
inequalities involving the skew-symmetric bifunction. The skew-symmetry of the nonlinear
bifunction plays a crucial part in the convergence analysis of these new iterative methods.
Noor [8] has used the resolvent operator technique and proposed an implicit method for mixed
variational inequalities. But, the numerical experience shows that the method depends sig-
nificantly on the initial penalty parameter. To overcome this difficulty, Wang et al. [17] have
proposed a self-adaptive technique to adjust penalty parameter at each iteration. Recently,
Zeng and Yao [18] have presented an inexact implicit method for solving general mixed
variational inequalities, they have used the absolute error to control the accuracy of the
approximate solution.

Motivated and inspired by the above research, we suggest and analyze an inexact implicit
method for mixed quasi variational inequalities. The inexact criteria is more efficient than
those in [18]. The numerical experience shows that the method depends significantly on the
initial penalty parameter. It converges quite quickly when a proper fixed penalty parameter
was chosen. However, this proper penalty parameter is unknown beforehand. If the fixed
penalty parameter is large, the number of iterations could be significantly large. Driven
by the fact of eliminating this drawback, we have used a self-adaptive technique to adjust
penalty parameter at each iteration. The main advantage of this technique can adjust the
penalty parameter automatically and the numbers of iterations is insensitive to the different
initial penalty parameter.

2 Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
let I be the identity mapping on H, and T, g : H → H be two operators. Let ∂ϕ denotes
the subdifferential of function ϕ, where ϕ : H → R ∪ {+∞} is a proper convex lower semi
continuous function on H. It is well known that the subdifferential ∂ϕ is a maximal monotone
operator. We consider the problem of finding u∗ ∈ H such that

〈T u∗, g(v) − g(u∗)〉 + ϕ(g(v), g(u∗)) − ϕ(g(u∗), g(u∗)) ≥ 0, ∀v ∈ H, (2.1)

where ϕ(., .) : H×H −→ R∪{∞} is a bifunction continuous with respect to both arguments.
Problem (2.1) is called the general mixed quasi variational inequality, see [13] . It has been
shown that a wide class of obstacle, unilateral, free, ecology and equilibrium problems can
be studied in the framework of mixed quasi variational inequalites (2.1), see [1,2,8,10–18].

For ϕ(v, u∗) = ϕ(v),∀u∗ ∈ H, problem (2.1) reduces to finding u∗ ∈ H such that

〈T u∗, g(v) − g(u∗)〉 + ϕ(g(v)) − ϕ(g(u∗)) ≥ 0, ∀v ∈ H,

which is known as the general mixed variational inequality, see [10].
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If K is closed convex set in H and ϕ(u, v) = IK (v) for all v ∈ H, where IK is the
indicator function of K defined by

IK (v) =
{

0, if v ∈ K ;
+∞, otherwise.

then the problem (2.1) is equivalent to finding u∗ ∈ H such that g(u∗) ∈ K and

〈T (u∗), g(v) − g(u∗)〉 ≥ 0, ∀g(v) ∈ K . (2.2)

Problem (2.2) is called the general variational inequality, which was first introduced and
studied by Noor [7] in 1988. For the applications, formulation and numerical methods of
general variational inequalities (2.2), we refer the reader to the survey [11].

If g = I, then the problem (2.2) is equivalent to finding u∗ ∈ K such that

〈T (u∗), v − u∗〉 ≥ 0, ∀v ∈ K , (2.3)

which is known as the classical variational inequality introduced and studied by Stampacchia
[16] in 1964. For the applications, formulation and numerical methods, see [1–18].

First, we collect some basic results, which are needed for the rest of the paper.

Definition 2.1 Let T, g : Rn → Rn be two mappings. T is said to be g-monotone, if

〈T (v) − T (u), g(v) − g(u)〉 ≥ 0, ∀u, v ∈ H.

Definition 2.2 The bifunction ϕ(., .) is said to be skew-symmetric, if

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) ≥ 0, ∀u, v ∈ H. (2.4)

Clearly, if the bifunction ϕ(., .) is linear in both arguments, then,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) ≥ 0, ∀u, v ∈ H,

which shows that the bifunction ϕ(., .) is nonnegative.

Definition 2.3 ([2]) Let A be a maximal monotone operator, then the resolvent operator
associated with A is defined as

JA(u) = (I + ρ A)−1(u), ∀u ∈ H,

where ρ > 0 is a constant and I is the identity operator. It is well known that the resolvent
operator JA is single-valued and nonexpansive.

Remark 2.1 It is well known that the subdifferential ∂ϕ(., .) of a convex , proper and lower-
semicontinuous bifunction ϕ(., .) : H × H −→ R ∪ {+∞} is a maximal monotone with
respect to the first argument, we can define its resolvent by

Jϕ(u) = (I + ρ∂ϕ(., u))−1) ≡ (I + ρ∂ϕ(u))−1, (2.5)

where ∂ϕ(u) ≡ ∂ϕ(., u).

The resolvent operator Jϕ(u)defined by (2.5) has the following characterization,

Lemma 2.1 ([10]) For a given z ∈ H, u ∈ H satisfies the inequality

〈u − z, v − u〉 + ρϕ(v, u) − ρϕ(u, u) ≥ 0, ∀v ∈ H, (2.6)

if and only if

u = Jϕ(u)[z],
where Jϕ(u) is resolvent operator defined by (2.5).
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It follows from Lemma 2.1 that

〈Jϕ(u)[z] − z, v − Jϕ(u)[z]〉 + ρϕ(v, Jϕ(u)[z]) − ρϕ(Jϕ(u)[z], Jϕ(u)[z]) ≥ 0,

∀u, v, z ∈ H (2.7)

The following result can be proved by using Lemma 2.1.

Lemma 2.2 u∗ is solution of problem (2.1) if and only if u∗ ∈ H satisfies the relation:

g(u∗) = Jϕ(u∗)[g(u∗) − ρT (u∗)], (2.8)

where ρ > 0 and Jϕ(u) is resolvent operator associated with the bifunction ϕ(., .).

From Lemma 2.2, it is clear that u is solution of (2.1) if and only if u is a zero point of the
residue equation

r(u, ρ) := g(u) − Jϕ(u)[g(u) − ρT (u)] = 0.

Throughout this paper, we make following assumptions.

Assumptions:

• H is a finite dimension space.
• g is homeomorphism on H i.e., g is bijective, continuous and g−1 is continuous.
• T is continuous and g-monotone operator on H.

• The bifunction ϕ(., .) is skew-symmetric.
• The solution set of problem (2.1) denoted by S∗ is nonempty.

3 Basic results

In this section, we prove some important results, which will be required in our following
analysis. The following lemma shows that ‖r(u, ρ)‖ is a non-decreasing function for ρ > 0,

to prove this lemma we are using the same techniques as in [1,5].

Lemma 3.1 For all u ∈ H and ρ′ > ρ > 0, it holds that

‖r(u, ρ′)‖ ≥ ‖r(u, ρ)‖. (3.1)

Proof Let t := ‖r(x, ρ′)‖
‖r(x, ρ)‖ , using inequality (2.7) we have

〈g(u) − ρT (u) − Jϕ(u)[g(u) − ρT (u)], Jϕ(u)[g(u) − ρT (u)] − Jϕ(u)′ [g(u) − ρ′T (u)]〉
+ ρϕ(Jϕ(u)′ [g(u) − ρ′T (u)], Jϕ(u)[g(u) − ρT (u)])
− ρϕ(Jϕ(u)[g(u) − ρT (u)], Jϕ(u)[g(u) − ρT (u)]) ≥ 0, (3.2)

and

〈g(u) − ρ′T (u) − Jϕ(u)′ [g(u) − ρ′T (u)], Jϕ(u)′ [g(u) − ρ′T (u)] − Jϕ(u)[g(u) − ρT (u)]〉
+ ρ′ϕ(Jϕ(u)[g(u) − ρT (u)], Jϕ(u)′ [g(u) − ρ′T (u)])
− ρ′ϕ(Jϕ(u)′ [g(u) − ρ′T (u)], Jϕ(u)′ [g(u) − ρ′T (u)]) ≥ 0, (3.3)

where Jϕ(u)′ = (I + ρ′∂ϕ(u))−1, from (3.2) and using

Jϕ(u)[g(u) − ρT (u)] − Jϕ(u)′ [g(u) − ρ′T (u)] = r(u, ρ′) − r(u, ρ),
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we obtain

〈r(u, ρ), r(u, ρ′) − r(u, ρ)〉 ≥ ρ〈T (u), r(u, ρ′) − r(u, ρ)〉
− ρϕ(Jϕ(u)′ [g(u) − ρ′T (u)], Jϕ(u)[g(u) − ρT (u)])
+ ρϕ(Jϕ(u)[g(u) − ρT (u)], Jϕ(u)[g(u) − ρT (u)]). (3.4)

Similarly, we have

〈r(u, ρ′), r(u, ρ) − r(u, ρ′)〉 ≥ ρ′〈T (u), r(u, ρ) − r(u, ρ′)〉
− ρ′ϕ(Jϕ(u)[g(u) − ρT (u)], Jϕ(u)′ [g(u) − ρ′T (u)])
+ ρ′ϕ(Jϕ(u)′ [g(u) − ρ′T (u)], Jϕ(u)′ [g(u) − ρ′T (u)]). (3.5)

Multiplying (3.4) and (3.5) by ρ′ and ρ respectively, and then adding them, using (2.4) we
get

〈ρ′r(u, ρ) − ρr(u, ρ′), r(u, ρ′) − r(u, ρ)〉 ≥ 0 (3.6)

and consequently

ρ′‖r(u, ρ)‖2 + ρ‖r(u, ρ′)‖2 ≤ (ρ + ρ′)〈r(u, ρ), r(u, ρ′)〉. (3.7)

From Cauchy-Schwarz inequality, we have

〈r(u, ρ), r(u, ρ′)〉 ≤ ‖r(u, ρ)‖ · ‖r(u, ρ′)‖.
Then

ρ′‖r(u, ρ)‖2 + ρ‖r(u, ρ′)‖2 ≤ (ρ + ρ′)‖r(u, ρ)‖ · ‖r(u, ρ′)‖. (3.8)

Dividing (3.8) by ‖r(u, ρ)‖2 we obtain

ρ′ + ρt2 ≤ (ρ + ρ′)t

which is equivalent to

(t − 1)

(
t − ρ′

ρ

)
≤ 0, (3.9)

this implies 1 ≤ t ≤ ρ′

ρ
, from which the required result follows. ��

We end this section by the following lemma which can be regarded as an extension of
result of Noor [8]. For the sake of completeness and to convey an idea of the technique
involved, we include its proof.

Lemma 3.2 ∀u ∈ H, u∗ ∈ S∗ and ρ > 0, we have

〈g(u) − g(u∗) + ρ[T (u) − T (u∗)], r(u, ρ)〉 ≥ ‖r(u, ρ)‖2. (3.10)

Proof For any u∗ ∈ S∗ solution of problem (2.1), we have

〈ρT (u∗), g(v) − g(u∗)〉 + ρϕ(g(v), g(u∗)) − ρϕ(g(u∗), g(u∗)) ≥ 0,

∀v ∈ H, ρ > 0. (3.11)

Taking g(v) = Jϕ(u)[g(u) − ρT (u)] in (3.11), we obtain

〈ρT (u∗), Jϕ(u)[g(u) − ρT (u)] − g(u∗)〉
+ ρϕ(Jϕ(u)[g(u) − ρT (u)], g(u∗)) − ρϕ(g(u∗), g(u∗)) ≥ 0. (3.12)
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Substituting z = g(u)−ρT (u) and v = g(u∗) into (2.7), and using the definition of r(u, ρ),

we get

〈r(u, ρ) − ρT (u), Jϕ(u)[g(u) − ρT (u)] − g(u∗)〉 + ρϕ(g(u∗), Jϕ(u)[g(u) − ρT (u)])
− ρϕ(Jϕ(u)[g(u) − ρT (u)], Jϕ(u)[g(u) − ρT (u)]) ≥ 0. (3.13)

Adding (3.12) and (3.13), and using the skew-symmetry of the bifunction ϕ(., .), we have

〈r(u, ρ) − ρ[T (u) − T (u∗], Jϕ(u)[g(u) − ρT (u)] − g(u∗)〉 ≥ 0,

which can be rewritten as

〈r(u, ρ) − ρ[T (u) − T (u∗)], g(u) − g(u∗) − r(u, ρ)〉 ≥ 0,

then

〈g(u) − g(u∗) + ρ[T (u) − T (u∗)], r(u, ρ)〉 ≥ ‖r(u, ρ)‖2

+ ρ〈g(u) − g(u∗), T (u) − T (u∗)〉. (3.14)

By using the g-monotonicity of T and (3.14), the conclusion of Lemma 3.2 is proved. ��

4 Inexact implicit method and convergence analysis

In this section, we describe the inexact implicit method. First, we need two non-negative
sequences {τk} and ηk satisfying to the following conditions

+∞∑
k=0

τk < +∞ and
∞∑

k=0

η2
k < +∞. (4.1)

Now, we introduce the inexact implicit method with variable parameter as follows:

Step 0. Given ε > 0, γ ∈ [1, 2), ρ > 0 and u0 ∈ H , set k = 0.
Step 1. Set ρk = ρ. If ‖r(uk, ρ)‖ < ε, then stop, otherwise
Step 2. Find uk+1 ∈ H such that

‖�k(u
k+1)‖ ≤ ηk‖r(uk, ρk)‖, (4.2)

where

�k(u) = g(u) + ρk T (u) − {[g(uk) + ρk T (uk)] − γ r(uk, ρk)}. (4.3)

Step 3. For a given constant α > 0, let

ωk = ‖ρk[T (uk+1) − T (uk)]‖
‖g(uk+1) − g(uk)‖ ,

Choose ρk+1 according to the following self-adaptive rule

ρk+1 =
⎧⎨
⎩

(1 + τk)ρk, if ωk < 1
1+α

,
1

(1+τk )
ρk, if ωk > 1 + α,

ρk, otherwise.
(4.4)

Set k := k + 1, and go to step 1.
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Remark 4.1 It follows from τk > 0 and (4.1) that
∏+∞

k=0(1 + τk) < +∞. Denote

Cτ :=
+∞∏
k=0

(1 + τk).

Then, ρk ⊂ [ 1
Cτ

ρ0, Cτ ρ0] is bounded. We let

ρl := inf
k

{ρk} > 0 and ρu := sup
k

{ρk} < +∞.

Note that if ηk = 0 we get the exact solution of �k(u) = 0.

Lemma 4.1 Let {uk} be the sequence generated by the proposed method. Then for any
u∗ ∈ S∗, we have

‖g(uk+1) − g(u∗) + ρk+1[T (uk+1) − T (u∗)]‖2

≤ (1 + τk)
2‖g(uk+1) − g(u∗) + ρk[T (uk+1) − T (u∗)]‖2. (4.5)

Proof Since 0 < ρk+1 ≤ (1 + τk)ρk, using the g-monotonicity of T, it follows that

‖g(uk+1) − g(u∗) + ρk+1[T (uk+1) − T (u∗)]‖2

= ‖g(uk+1) − g(u∗)‖2 + 2ρk+1〈g(uk+1) − g(u∗), T (uk+1) − T (u∗)〉
+ ρ2

k+1‖T (uk+1) − T (u∗)‖2

≤ ‖g(uk+1) − g(u∗)‖2 + 2(1 + τk)ρk〈g(uk+1) − g(u∗), T (uk+1) − T (u∗)〉
+ (1 + τk)

2ρ2
k ‖T (uk+1) − T (u∗)‖2

≤ (1 + τk)
2{‖g(uk+1) − g(u∗)‖2 + 2ρk〈g(uk+1) − g(u∗), T (uk+1) − T (u∗)〉

+ ρ2
k ‖T (uk+1) − T (u∗)‖2}

= (1 + τk)
2‖g(uk+1) − g(u∗) + ρk[T (uk+1) − T (u∗)]‖2. (4.6)

We can get the assertion of this lemma. ��

The following result plays an important role in the convergence analysis of the proposed
method.

Theorem 4.1 Let {uk} be the sequence generated by the inexact implicit method. Then there
exists a k0 ≥ 0, such that for all k ≥ k0

‖g(uk+1) − g(u∗) + ρk+1[T (uk+1) − T (u∗)]‖2

≤ (1 + ξk)‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2 − c‖r(uk, ρk)‖2, (4.7)

where

ξk := (1 + τk)
2

(
1 + 4η2

k

γ (2 − γ )

)
− 1 and c := γ (2 − γ )

2
.
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Proof It follows from (4.3) that

‖g(uk+1) − g(u∗) + ρk[T (uk+1) − T (u∗)]‖2

= ‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)] − [γ r(uk, ρk) − �k(u
k+1)]‖2

= ‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2 + ‖γ r(uk, ρk) − �k(u
k+1)‖2

− 2γ 〈g(uk) − g(u∗) + ρk[T (uk) − T (u∗)], r(uk, ρk)〉
+ 2〈g(uk) − g(u∗) + ρk[T (uk) − T (u∗)],�k(u

k+1)〉
≤ ‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2 − 2γ ‖r(uk, ρk)‖2

+ 2〈g(uk) − g(u∗) + ρk[T (uk) − T (u∗)],�k(u
k+1)〉

+ ‖γ r(uk, ρk) − �k(u
k+1)‖2, (4.8)

where the inequality follows from Lemma 3.2.
Since ‖�k(uk+1)‖ ≤ ηk‖r(uk, ρk)‖ and limk→∞ ηk = 0, it is easy to show that there is

a k0 > 0, such that for all k ≥ k0

‖γ r(uk, ρk) − �k(u
k+1)‖2 ≤ γ 2‖r(uk, ρk)‖2 + 1

4
γ (2 − γ )‖r(uk, ρk)‖2. (4.9)

Using the Cauchy-Schwarz inequality and (4.2), we get

2〈g(uk) − g(u∗) + ρk[T (uk) − T (u∗)],�k(u
k+1)〉

≤ 4η2
k

γ (2 − γ )
‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2 + γ (2 − γ )

4η2
k

‖�k(u
k+1)‖2

≤ 4η2
k

γ (2 − γ )
‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2 + 1

4
γ (2 − γ )‖r(uk, ρk)‖2.

(4.10)

Substituting (4.9) and (4.10) into inequality (4.8), we obtain

‖g(uk+1) − g(u∗) + ρk[T (uk+1) − T (u∗)]‖2

≤
(

1 + 4η2
k

γ (2 − γ )

)
‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖2

− 1

2
γ (2 − γ )‖r(uk, ρk)‖2, (4.11)

which combined with (4.6) gives the desired result. ��

From the above theorem, we get the convergence of the proposed method as follows.

Theorem 4.2 The sequence {uk} generated by the proposed method converges to a solution
point of problem (2.1).

Proof From
∑+∞

k=0 τk < +∞ and
∑+∞

k=0 η2
k < +∞ it follows that

∑+∞
k=0 ξk < +∞ and∏+∞

k=0(1 + ξk) < +∞. Denote

Cs :=
+∞∑
k=0

ξk < +∞ and C p :=
+∞∏
k=0

(1 + ξk).
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Let ũ ∈ S∗, From (4.7) we get

‖g(uk+1) − g(ũ) + ρk+1[T (uk+1) − T (ũ)]‖2

≤
k∏

i=0

(1 + ξi )‖g(u0) − g(ũ) + ρ0[T (u0) − T (ũ)]‖2

≤ C p‖g(u0) − g(ũ) + ρ0[T (u0) − T (ũ)]‖2.

Therefore, there exists a constant C > 0 such that

‖g(uk) − g(ũ) + ρk[T (uk) − T (ũ)]‖2 ≤ C, ∀k ≥ 0. (4.12)

From (4.12), g is homeomorphism and the g-monotonicity of T, it is easy to verify that the
{uk} is bounded. Combining (4.7) and (4.12), we have

c
+∞∑
k=0

‖r(uk, ρk)‖2 ≤ ‖g(u0) − g(ũ) + ρ0[T (u0) − T (ũ)]‖2

+
+∞∑
k=0

ξk‖g(uk) − g(ũ) + ρk[T (uk) − T (ũ)]‖2

≤ C + C
+∞∑
k=0

ξk

≤ (1 + Cs)C

and it follows from Lemma 3.1 that

lim
k→∞ r(uk, ρl) = 0.

Let u∗ be a cluster point of {uk} then there exists a subsequence {uk
j } −→ u∗. Since T and

g are continuous then r(u, ρl) is continuous, and

r(u∗, ρl) = lim
j→∞ r(uk j , ρl) = 0

then u∗ is a solution point of problem (2.1).
Assume that ū �= u∗ is another cluster point of {uk}. Since u∗ is a cluster point of {uk},

there exists a k0 > 0 such that

‖g(uk0) − g(u∗) + ρk0 [T (uk0) − T (u∗)]‖ ≤ 1

2
√

C p
‖g(ū) − g(u∗)‖. (4.13)

Using the g- monotonicity of T, for all k ≥ k0, we have

‖g(uk) − g(u∗)‖ ≤ ‖g(uk) − g(u∗) + ρk[T (uk) − T (u∗)]‖

≤
⎛
⎝ k−1∏

i=k0

(1 + ξi )

⎞
⎠

1
2

‖g(uk0) − g(u∗) + ρk0 [T (uk0) − T (u∗)]‖

≤ √
C p‖g(uk0) − g(u∗) + ρk0 [T (uk0) − T (u∗)]‖

≤ 1

2
‖g(ū) − g(u∗)‖,
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where the second inequality follows from (4.7) and the last inequality follows from (4.13).
Then

‖g(uk) − g(ū) ≥ ‖g(ū) − g(u∗)‖ − ‖g(uk) − g(u∗)‖ ≥ 1

2
‖g(ū) − g(u∗)‖ > 0,

∀k ≥ k0.

This contradicts with the assumption that ū is a cluster point of {uk}. Thus, it follows imme-
diately that the sequence {uk} has exactly one cluster point, i.e.,

lim
k→∞ uk = u∗. ��

5 Relationship to some existing implicit methods

Some methods can be viewed as special case of our method for example:

• Method of Noor [8]. If g = I, ηk = 0 and ϕ(v, u∗) = ϕ(v),∀u∗ ∈ H, the proposed
method reduces to method of Noor [10] with fixed parameter, since the method with self-
adaptive parameter is more preferable in practice than the one with fixed parameter. We
propose an inexact implicit method with variable parameter.

• Method of Wang et al. [17]. If g = I and ϕ(v, u∗) = ϕ(v),∀u∗ ∈ H, the proposed method
collapses to method of Wang et al. [17]. The inexact method of Wang et al. proposed to
compute ηk explicitly in each iteration which is different to the Step 2 in our method.

• Method of Zeng and Yao [18]. If ϕ(v, u∗) = ϕ(v),∀u∗ ∈ H, the proposed method becomes
method of Zeng and Yao [18]. We denote by uk+1

exact the unique exact solution and uk+1 the
approximate solution. From 4.2 we have

‖g(uk+1) − g(uk+1
exact )‖ ≤ ‖(g + ρk T )(uk+1)

− (g + ρk T )(uk+1
exact )‖ ≤ ηk‖r(uk, ρk)‖. (5.14)

The inexact version of the method in [18] obtains the approximate solutions uk+1 according
to the following criteria:

‖g(uk+1) − g(uk+1
exact )‖ ≤ ‖(g + ρk T )(uk+1) − (g + ρk T )(uk+1

exact )‖ ≤ ηk, (5.15)

where
∞∑

k=0

ηk < +∞. (5.16)

The main drawback of the inexact criteria (5.15) is that it is difficult to decide wether or not
the value ηk is appropriate at a specific iteration. In particular, when the value of ηk is too
large, the approximate of solution uk+1 may be far away from the exact solution uk+1

exact .

This fact means that the current iteration make little progress towards the solution. Our
new inexact criteria (5.14) make use to control the accuracy of the approximate solution,
thus overcome the difficulties caused by (5.15). Furthermore, the criteria (5.16) is relaxed
to

∑∞
k=0 η2

k < +∞.

6 Computational results

In this section, we present some numerical results for the proposed inexact implicit method.
Our objective is to show that the self-adaptive adjustment rule is necessary in practice.
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We consider the following least distance problem:

min
1

2
‖x − c‖2

s.t. Ax ∈ �,

where A ∈ Rn×n, c ∈ Rn and � ⊂ Rn is a closed convex set. This problem can be written
as

min
1

2
‖x − c‖2

s.t. Ax − ξ = 0

ξ ∈ � (6.1)

The Lagrangian function of problem (6.1) is

L(x, ξ, y) = 1

2
〈x, x〉 − 〈c, x〉 − 〈y, Ax − ξ 〉,

then

L(x∗, ξ∗, y) ≤ L(x∗, ξ∗, y∗) ≤ L(x, ξ, y∗),

where (x∗, ξ∗, y∗) ∈ Rn × � × Rn is saddle point of the Lagrangian function. From the
above inequalities we can obtain ∀ξ ∈ �⎧⎨

⎩
x∗ = 〈A, y∗〉 + c;
〈ξ − ξ∗, y∗〉 ≥ 0;
Ax∗ = ξ∗.

(6.2)

Substituting the first and the third equation in the second of system (6.2), we get

(AAT y∗ + Ac) ∈ �, 〈ξ − (AAT y∗ + Ac), y∗〉 ∀ξ ∈ �. (6.3)

Problem (6.3) is special case of problem (2.1), by taking

g(u) = AAT u + Ac, T (u) = u and ϕ(v, u) =
{

0, if v ∈ Rn+;
+∞, otherwise.

We form the test problem as follows: The matrix A is n × n matrix whose entries are
randomly generalized in the interval (−5, +5), the vector c is generated from a uniform
distribution in the interval (−500, 500) and the closed convex set � is defined as

� := {z ∈ Rn |‖z‖ ≤ a}.
Note that in the case ‖Ac‖ > a, ‖AAT u∗ + Ac‖ = a (otherwise u∗ = 0 is the trivial

solution). Therefore, we test the problem with a = ρ‖Ac‖ and ρ ∈ (0, 1).

We adjust the parameter according the following rule:

ρk+1 =
⎧⎨
⎩

ρk ∗ 2, if ωk < 1
1+α

,

ρk ∗ 0.5, if ωk > 1 + α,

ρk, otherwise.

We denote (IGMV) and (IGMVρ) as the proposed inexact implicit methods with fixed
and with self-adaptive parameters respectively.

In all tests, we take γ = 1.8, α = 1, the starting point u0 = (0, . . . , 0)T and the stopping
criterion ‖r(uk, 1)‖∞ ≤ 10−7. All codes were written in Matlab and ran on a P4-2.00GHz
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notebook computer. The iteration numbers and the computational time of IGMV and IGMVρ

methods for the problem with different dimensions and initial parameter ρ are given in the
following table.

Numerical results for problem (6.3)

ρ n = 100 n = 300

IGMV method IGMVρ method IGMV method IGMVρ method

No. It. CPU (s) No. It. CPU (s) No. It. CPU (s) No. It. CPU (s)

10−1 7095 28.87 26 0.65 − − 32 3.11
10−2 2728 12.17 39 1.22 8112 664.61 48 4.79
10−3 1233 6.86 54 1.54 4419 363.25 61 6.31
10−4 773 6.12 68 1.82 841 74.86 59 6.28
10−5 595 5.22 73 2.30 285 27.70 80 8.35
10−6 408 4.57 64 2.28 211 21.23 94 9.77

– Means that the number of iterations >20,000 and CPU time >1,000 s

The above table shows that the proposed inexact implicit methods with fixed parameter
parameter (IGMV method) depends heavily on the value of ρ. It converges quickly when
the parameter ρ is too small. Then IGMV method is problem dependent. Also from this
table, we were confirmed that the the proposed inexact implicit methods with self-adaptive
parameter (IGMVρ method) is very stable and efficient no matter what initial parameter ρ0

is. In addition, for a set of similar problems, it seems that the iteration numbers are not very
sensitive to the problem size.
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